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A research project at the “Laboratoire d'électronique quantique” consists in a theoretical study of the reflection and 
diffraction phenomena via an atomic mirror. This paper presents the principle of an evanescent wave atomic mirror. Many 
groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), 
Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc….. A laser beam goes into a prism with an incidence 
larger than the critical incidence. It undergoes a total reflection on the plan face of the prism and then exits. The transmitted 
resulting wave out of the prism is evanescent and repulsive as the pulsation detuning of the laser beam compared to the 
atomic transition Δ = ωL- ω0  is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or 
more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the 
μeV) is less than the maximum of the dipolar potential barrier ћΩ

2
/Δ where Ω is the Rabi pulsation [1]. The dipolar potential 

with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium 
transition at a wavelength of 780 nm delivered by a Titane-Saphir laser between a fundamental state Jf = 1/2 and an excited 
state Je = 3/2). This potential is corrected by an attractive Van der Waals term [2]. 
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1. Introduction 
 

The reflection of cold atoms on an evanescent wave 

atomic mirror is based on the interaction of the atom with 

an inhomogeneous electromagnetic field E(r,t). In the case 

where the interaction potential is repulsive, the reflection 

is obtained when the maximum of the potential is larger 

than the kinetic energy of the atoms at the entrance of the 

potential. The case of an exponential potential is illustrated 

in Fig. 1. 

Above the prism, the amplitude of the laser field 

decreases exponentially with the distance to the prism. The 

laser frequency is adjusted above the atomic transition 

(blue detuning ). When the atom enters the evanescent 

wave (TE polarised in our case), it undergoes a repulsive 

dipolar force. 

The atom is repelled towards the zones of weak field. 

It submits a reflection. 
 

 

Fig. 1. Laser diagram within the prism. The second interface 

 is from (1) to (2). 

 

The amplitude of the electric field in each region is as 

follows: 

 
E0 = A.ey.exp{.(k0.r – ωLt)} + cc          (1) 

 

E1 = B. ey.exp{i.(k1.r – ωLt)} + cc         (2) 

 

E2 = C. ey.exp{i.(k2.r – ωLt)} + cc          (3) 

 

where ey is the unity polarisation vector. 

 

We have:  k2 = kx.ex + i.κ.ez              (4)  

 

| k0 |
2
  (ωL / c)

2 
= 

2

Lk                
(5) 

Thus  κ = k0. 1sin.
2

1

2 n                   (6) 

kx = k0.n.sinθ1                       (7)

   

 

E2 = C. ey exp{- κ .z}.exp{i. (kx.x – ωLt)} + cc        (8) 

 
The resulting wave is evanescent: it decreases 

exponentially along Oz and is progressive along Ox. We 

define the transmission coefficients in amplitude at the 

prism interfaces as follows:  

 
t01 = B / A  for the first interface          (9) 

 

t12 = C / B for the second interface           (10) 

 

In the regions (0) and (2), the intensities are given by: 
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I0 = ½.c.ε0. E0
2   

              (11)  

 

where E0 is the amplitude of the electric field in region (0) 

which is vacuum   

 

I2 = ½.c.ε0. E2
2                                               

(12) 

 

Inside the prism of refraction index n, the intensity is: 

  

 

I1  = ½.c.ε0. n. E1
2
            (13) 

 

We define the following transmission coefficients in 

intensity (called transmission factors) as:  

 

T01 = I1 / I0 = n.|t01|
2
            (14) 

 

T12 = I2 / I1 = |t12|
2
 / n                  (15) 

 
The expression of the coefficients is more complex 

when we take into account the TM and TE polarisations of 

the electric fields [3]. 

The atomic reflection on the evanescent wave is 

possible because of the dipolar coupling between the atom 

and the field. The dipolar potential is simply equal to the 

light shift Λ(r): 

  

Udip (r) =  .Λ(r)   .Ω
2
(r) / 4Δ           (16) 

 

where  .(r) = . E2(r) and  is the dipolar atomic 

momentum.  

Precisely for an evanescent wave, the dipolar potential 

is written like: 

  

Udip (z) =  .Λ(z=0).exp(-2. z. )          (17) 

 
In fact, the atoms are cooled and captured in a 

magneto-optical trap placed at a distance of the order of 

the cm above the prism surface. 

The dipolar potential is repulsive for a positive 

detuning (Δ > 0). The atoms are repelled towards the 

regions of weak field. 

A rebound is possible when the atom’s energy is less 

than the maximum of the corrected dipolar potential of the 

interaction of the atom with the dielectric surface. The 

rebound at a longitudinal distance zr of the atomic 

trajectory occurs when the incident kinetic energy in 

region (2) is equal to the dipolar energy, i.e,  

   

2

1
m.v2

2 (inc)
 = . )0(  z .exp(-2. z. )         (18) 

 

This is the case at weak saturation, i.e, when s << 1 where  

s = 2.

2

22

2

.41

1









                        (19) 

 

In the evanescent wave, the atoms are not simply 

submitted to the dipolar potential. When the atoms 

approach closely to the prism surface, the interaction 

potential between the dipole of the atom and its image in 

the dielectric has to be taken into account. It is the Van der 

Waals attractive potential. For an atom in a determined 

energy state (fundamental level), the mean value of the 

atomic dipole is null and the Van der Waals interaction is 

due to the fluctuations of the dipole in this level.  

We know in the case of the Lennard-Jones 

approximation (L.J) (distance between the atom and its 

image of the order of λL / 2π or much smaller than λL / 2π) 

that we can neglect the propagation time of the fields over 

this distance. For distances where the interaction of the 

atomic dipole and its image is instantaneous, we refer to a 

quantum electrodynamic calculation (QED) where the 

term 
3

1

z
 is replaced by the law 

4

1

z
 [4]. This is the case 

for distances z much larger than λL / 2π . See Fig. 2 for the 

plot of the Van der Waals potential (D2 transition at 780 

nm for the Rubidium atom). Reference [5] gives 

indications on the 1/z
3
 electrostatic calculation of the Van 

der Waals potential. We give the total potential: 

 
Utot (z) = Udip (z) + UVdW (z)    (20) 

 

=
3).(

)(
)..2exp().0(.

zk

zA
zz

L

VdW         (21) 

 

where   is the natural linewidth of the excited state. 

 

AVdW (z) = ALJ or AVdW (z)  =  fQED (z). ALJ   following the 

taken model where: 

 

ALJ = -




0
2

3
L

22

48n

kffn
  (22) 

 

<
2
> is the mean value of the electrostatic dipole which 

depends only upon the fundamental state. 

We note that in the general case, the potential is not 

purely exponential as we must take into account the Van 

der Waals potential describing the interaction between the 

atom and the prism surface. The evanescent wave mirror is 

realised by utilising the total reflection of a laser beam 

within the prism. When the atom enters the evanescent 

wave, it is submitted to a repulsive dipolar force resulting 

from the interaction between the atom and the evanescent 

laser field: the atom undergoes a reflection. 

We give the dipolar potential describing the 

interaction between the atom and the evanescent wave 

when the polarisation is taken into account (Fig. 3). We 

will not present the expressions of the light shifts for a Jf  = 

1/2  Je = 3/2. 

The details of the Clebsch-Gordon coefficients for a 

transition MJfJff ,2/1,   MJeJee ,2/3,   
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for all the polarisations   and,  

corresponding to the new defined base (eπ, e+ , e-) won’t be 

given here. See reference [3].  

 

 

 
 

Fig. 2. Van der Waals potentials in both QED and Lennard-

Jones Models (λ0 = λL). 

 

 

For any distance and especially for mean distances z, 

the Van der Waals potential is written as [6]: 

 

UVdW (z)= -  

 
. H(p,ε).exp(-2ipωz/c) ]                   (23) 

 

where H(p,ε)=  

              (24) 

 

p is the atomic momentum, α(ω) is the atomic 

polarisability and ε is the dielectric constant of the surface. 

The atomic polarisability is written as: 

 

α(ω)=α(0).     (25) 

 

We can use this expression of the Van der Waals 

interaction for small distances (z << λ0/2π). AQED = 0.112 

for n = 1.869. We find approximately the same value as 

for the Lennard-Jones calculation: AL.J =0.113.   

 

 
 

 

Fig. 3. Total potential in the L. J model and the QED model. 

 

 
When the undulatory nature of the atoms is not 

considered, the rugosity is determined by the quadratic 

fluctuations of the angular distribution of the atomic 

reflection compared to the direction of the specular 

reflection. 

Fluorescence imaging of the atomic cloud after 

reflection enabled a quantitative study of the roughness of 

the mirror.  

A Monte Carlo simulation of atoms bouncing on a 

perfectly flat mirror, including the distribution in position 

and velocity of the atoms, the eventual presence of a slit, 

the pulsed nature of the mirror, the detection time and the 

diffusion of the atoms in the probe beam allow to calculate 

the resolution function which defines the expansion of the 

atomic cloud due to the roughness of the mirror.  

A high resolution study of the specularity of the 

atomic reflection from an evanescent wave mirror using 

velocity selective Raman transitions has been done by A. 

Aspect and coworkers [7]. We observe a double structure 

in the velocity distribution after reflection: a peak 

consistent with specular reflection and a diffuse reflection 

pedestal whose contribution decreases rapidly with 

increasing detuning. The diffuse reflection is due to two 

distinct effects: spontaneous emission in the evanescent 

wave and roughness in the evanescent wave potential 
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whose amplitude is smaller than the de Broglie wavelength 

of the reflected atoms. The atomic reflection is diffuse 

rather than specular if the surface roughness is comparable 

to the wavelength of the incident atoms [7]. We introduce 

the spatial coherence function of the reflected matter 

waves in a natural manner (Born approximation). The 

distributions are calculated by taking the Fourier transform 

of the coherence function. 

We'll examine the role of spontaneous emission for 

which the rate is inversely proportional to the detuning Δ 

and is responsible of the non specular aspect of the atomic 

reflection (atomic diffusion). In the contrary, we note that 

the specularity of the reflection preserves the coherence of 

the atomic wave packet. The atoms will constitute a probe 

of the rugosity of the prism surface which can be imperfect 

or super-polished.  

The atomic scattering is sensitive to height variations 

of the dielectric surface at the scale of the incident atomic 

wavelength dB . The momentum distribution of the 

scattered atoms, averaged over a large number of samples 

of the rough surface, gives access to the power spectrum 

of the surface roughness in this spectral range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We won’t present the details of the calculation 

performed by the group of A. Aspect but we emphasize 

that the diffuse atomic reflection from the evanescent 

wave above a corrugated dielectric surface may serve as a 

probe of the surface quality at the scale of the atomic 

wavelength. We note that this surface probe is 

complementary to optical near-field microscopy.  
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